Gait-Based Human Recognition by Classification of Cyclostationary Processes on Nonlinear Shape Manifolds
نویسندگان
چکیده
We study the problem of analyzing and classifying human gait by modeling it as a stochastic process on a shape space. We consider gait as a evolution of human silhouettes as seen in video sequences, and focus on their shapes. More specifically, we define a shape space of planar, closed curves and model a human gait as a stochastic process on this space. Due to the periodic nature of human walk, this process is naturally constrained to be cyclostationary, that is, its mean path is assumed to be cyclic. We compare two subjects using a metric that quantifies differences between average gait cycles of each subject. This computation uses several tools from differential geometry of the shape space, including computation of geodesics, estimation of means of observed shapes, interpolation between observed shapes, and temporal registration of two gait cycles. Finally, we apply a nearest-neighbor classifier, using the gait metric, to perform human recognition, and present results from an experiment involving 26 subjects.
منابع مشابه
Cyclostationary Processes on Shape Spaces for Gait-Based Recognition
We present a geometric and statistical approach to gaitbased human recognition. The novelty here is to consider observations of gait, considered as planar silhouettes, to be cyclostationary processes on a shape space of simple closed curves. Consequently, gait analysis reduces to quantifying differences between underlying stochastic processes using their observations. Individual shapes can be c...
متن کاملThe Role of Manifold Learning in Human Motion Analysis
Human body is an articulated object with high degrees of freedom. Despite the high dimensionality of the configuration space, many human motion activities lie intrinsically on low dimensional manifolds. Although the intrinsic body configuration manifolds might be very low in dimensionality, the resulting appearance manifolds are challenging to model given various aspects that affects the appear...
متن کاملبهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملEffect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملHomeomorphic Manifold Analysis: Learning Decomposable Generative Models for Human Motion Analysis
If we consider the appearance of human motion such as gait, facial expression and gesturing, most of such activities result in nonlinear manifolds in the image space. Although the intrinsic body configuration manifolds might be very low in dimensionality, the resulting appearance manifold is challenging to model given various aspects that affects the appearance such as the view point, the perso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009